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a b s t r a c t

While the technology now exists to harvest wave energy in coastal regions, the capital expenditures for
wave farms can be substantial, so it is important to be able to simulate the power in advance. Further, to
integrate wave energy into the grid, utilities need to forecast over short horizons and calculate reserve
requirements. Wave farms are simulated at three locations in British Columbia, Canada. Power series are
calculated for six types of wave energy converters (WECs), four that operate in deep water, and two in
shallow water. Forecasts are run using a physics-based model and statistical models. Five major
conclusions emerge from the analysis. First, given the intermittency of buoy data, physics model
hindcasts are an effective method of interpolating missing values. Second, the power output from
converters does not have the same properties as the wave energy flux. Instead, the power output is a
nonlinear function of the wave height and period, with fewer large outliers. Third, time series models
predict well over near-term horizons while physics models forecast more accurately over longer
horizons. The convergence point, at which the two types of models achieve comparable degrees of
accuracy, is in the area of 2–3 h in these data sets, lower than in most prior studies. The recommendation
is to use time series methods to forecast at the horizons required for reserves, and physics models for
long-term planning. Fourth, the predictability of the power output can differ substantially for individual
converters. Finally, wave energy is found to be significantly less costly in terms of reserves than wind
and solar.

& 2015 Elsevier Ltd. All rights reserved.

1. Introduction

While the technology exists to harvest wave energy, there are
still several economic and technical barriers to widespread devel-
opment of wave farms (Esteban and Leary, 2011; Arinaga and
Cheung, 2012). The first and most obvious is identifying locations.
British Columbia, on the Pacific coast of Canada, is favorably
situated. Off the coast of Vancouver Island, the near-shore wave
energy flux averages about 30 kW per meter of crest length
(kW/m). Further from shore, the mean wave energy increases to
40 kW/m, and at the edge of the continental shelf, it is closer to
50 kW/m (Robertson et al., 2014).

A second issue is that capital expenditures can be substantial,
so it is useful to be able to simulate the power output in advance.
While some prior studies have used the standardized wave energy
transport flux to estimate the power potential, matrices for various
types of wave energy converters (WECs) have recently become

available. This makes it possible to estimate the power output for
particular devices. Simulated power series are calculated for six
types of converters, four that operate in deep water, and two in
shallow water.

A third issue is the intermittency of wave buoy data. In addition
to missing hours or days, buoy records are often incomplete for
weeks or months, due to equipment failure or other service issues.
The proposed solution is to interpolate using retrospective simula-
tions of a well-known physics-based wave model, SWAN (Simulat-
ing WAves Near shore).

A fourth issue is that the data at individual buoy sites is often
volatile, with a great deal of random variation due to local sea
conditions. Since wave farms are dispersed over wider areas, the
noise should average out, making the power smoother and more
predictable. Brekken et al. (2012) propose simulating wave para-
meters over large areas using the wave spectrum. The approach
used here is to take weighted averages of nearby buoys. In this
respect, the Vancouver data offers one crucial advantage: the
buoys are close enough to create realistic simulations.

A final issue is forecasting. Short-term forecasting is used for
operational planning, reserve usage, switching sources, and peak
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load matching. The relevant horizons can range from a few
minutes to several hours. In forecasting wave energy, the analyst
has a choice of two approaches, physics-based models or time
series methods. Prior studies have found statistical models to be
more accurate at short horizons, while physics models predict
more accurately beyond the first few hours (Reikard et al., 2011). It
is also possible to combine the two methods, for instance by
ensemble averaging or using statistical models to correct the bias
(Woodcock and Engel, 2005; Woodcock and Greenslade, 2006;
Durrant et al., 2008; Pinson et al., 2012).

This study addresses all five issues. Buoy time series and physics
model hindcasts are used to create data for the wave height and
period, while WEC matrices are used to calculate power series.
Section 2 sets out the databases. Physics model simulations are set
out in Section 3. Section 4 deals with alternate measures of power
and wave energy converters. The wave farm simulations are pre-
sented in Section 5. Section 6 compares the forecasting performance
of time series and physics models. In Section 7, the cost of integrating
wave energy into the grid is quantified using reserve calculations.
Section 8 concludes.

2. The data

The databases were compiled as part of a broader research project
by the Institute for Integrated Energy Systems at the University of
Victoria. Table 1 reports the depth, time span, latitude and longitude
for each of the buoys, along with the number of missing observa-
tions. Al the data sets include the significant wave height (HSt), in
meters, and the mean wave period (TMt), in seconds, at an hourly
resolution or better. Fig. 1 provides a map of the locations, and the
bathymetry of the Vancouver coastline.

The Amphitrite Bank and Estevan Point buoys are located along
the coast, at depths of 42–43 m, at a distance of 89 km from each
other. The overlapping period for the two data sets is April 19,
2013 through January 27, 2014. The Amphitrite time series are
more complete; the Estevan record is sparser. Further out on the
continental shelf, there are two buoys at La Perouse bank, about
2 km from each other, at a depth of 74 m. The Environment Canada
(EC) buoy provides a longer history, beginning November 23, 1988,
and running through the present day. The second buoy, operated
by the Coastal Data Information Program (CDIP), contains observa-
tions from April 30, 2012 through April 28, 2013. The data is at a
30 min resolution, but to make it compatible with the EC data, it
was consolidated to 1 h. While the CDIP data set is much shorter, it
is more complete for the overlapping period. The Florencia Bay site
is at a depth of 25 m. The data consist of irregular observations,
sometimes several records within the hour, while in other hours
the values are missing completely. The database contains usable
observations only for June 1, 2013 to January 27, 2014.

3. The Physics model simulations

Large-scale physics-based wave models have been in operation
since the 1960s, and undergo continuous revision to improve
performance (Hasselmann et al., 1976, 1980, 1985; Janssen, 1991,
2007). SWAN is a third generation phase-averaged Eulerian numer-
ical wave model, designed to simulate the propagation of waves in
shallow near-shore areas (Booij et al., 1999; Holthuijsen, 2007).

The wave action density (N) evolves as a function of time (t),
distance in the Cartesian coordinates (x,y), the shifting of relative
frequency due to variation in depths and currents (σ), and depth
and current induced refraction (θ). Let Cg denote the wave action
propagation speed in (x, y, σ, θ) space. Let S denote the combined
source and sink terms. In deep water, the three major components
of S are the input by wind (SIN), nonlinear wave–wave interactions
(SNL) and wave dissipation through white-capping (SWC). In shal-
low water, S includes the effects of bottom friction (SBF) and
shoaling-induced breaking (SBR). The action balance equation can
be expressed in the following form:

∂N=∂tþ∂Cg;xN=∂xþ∂Cg;yN=∂yþ∂Cg;σN=∂σþ∂Cg;θN=∂θ¼ S=σ;

S¼ SINð Þþ SNLð Þþ SWCð Þþ SBFð Þþ SBRð Þ½ � ð1Þ

To develop the SWAN model simulations, a choice of ocean
scale wind and wave inputs, and numerical wind wave growth/
white capping solvers is required. The preferred boundary condi-
tions for the SWAN model are directional wave buoy measure-
ments. Unfortunately, appropriate directional measurements were
not available for Vancouver Island. The best alternative is to use
results from ocean-scale wind–wave models such as WAVEWATCH
III (WW3). This study utilized publically available wave results
from the Fleet Numerical Meteorology and Oceanography Center
(FNMOC) ocean-scale operational WW3 model (Wittmann, 2001),
and transient wind fields from the Coupled Ocean/Atmosphere
Mesoscale Prediction System (COAMPS) wind model. An unstruc-
tured grid was used to provide both greater computational effi-
ciency and improved resolution of nonlinear wave effects in
shallower water. Within the area covered by the simulation, the
depth ranges from approximately 1000 m at the continental shelf
to 12 m just beyond the surf zone. In the deeper water, large grid
spacing is sufficient, while in shallow water closer to shore the
grid spacing must be much smaller, to capture the small scale
wave transformations that occur due to interaction with the ocean
floor. Grid spacing was specified proportional to water depth with
a lower limit on spacing of 75 m. The proportionality constant was
determined though a convergence analysis using the significant
wave height (HSt) as a metric for convergence. The final SWAN
model setup included Westhuysen’s wind-growth/white capping
formulation and SWAN frictional effects. For further documenta-
tion on optional set points, see SWAN (2006).

Table 1
The Vancouver buoy data.

Location Depth (m) Starting Date Data End Date Resolution Latitude (N) Longitude (W) Missing values

Amphitrite Bank 43 4/19/2013 1/27/2014 Hourly 48.88 125.62 757
Estevan Point 42 4/23/2013 1/27/2014 Hourly 49.35 126.61 1682
Florencia Bay 25 5/31/2013 1/27/2014 Hourly 48.96 125.62 –

La Perouse Bank, Environment Canada
buoy 74 11/23/1988 1/22/2014 Hourly 48.83 125.98 1421
La Perouse Bank, Coastal Data Information
Program buoy 74 4/30/2012 4/28/2013 30 min 48.84 126.01 74

At all buoy sites, the data consist of the significant wave height and mean wave period.
At Florencia Bay, the observations are spaced irregularly for several months, with multiple values within an hour. The data is reasonably complete for the period from June 1
2013 through January 27, 2014. No data is available prior to May 31.
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The model was validated by comparing HSt and TMt from the
SWAN hindcasts against the measured values at the buoy sites.
Table 2 reports the bias (B), scatter index (SI), and correlation (r) for
HSt and TMt at the EC, Estevan, Amphitrite and Florencia buoys. SWAN
estimates HS with a high degree of accuracy at all four locations. At La
Perouse, the correlation is 0.95, and Amphitrite and Florencia, it is
0.92 while at Estevan it is only slightly lower, at 0.88. Similarly, the
bias ranges from as little as �0.01 m at Amphitrite and Florencia to
�0.04 at La Perouse and �0.06 at Estevan. The correlations are
slightly lower for the wave period, but still quite good, 0.75 to 0.81.
The wave period bias is less than 1 s on average.

After filling in the missing values with the SWAN hindcasts, the
Amphitrite–Estevan database contains 6787 continuous observa-
tions. The La Perouse database runs from January 1, 2012 through
April 28, 2013, providing 11,610 continuous observations (the CDIP
values for January 1 through April 29 2012 are SWAN hindcasts).
At Florencia bay, SWAN hindcasts were used for the first five
months of 2013, as well as for the missing values over the next
eight months. The final dataset consists of 9401 continuous
observations, beginning January 1, 2013.

4. Wave power and converters

The next task is to convert the data into measures of power. The
standard measure of wave power is the wave energy flux, EFt,
denominated in kW/m. Let g denote the acceleration caused by
gravity (9.8086 m/s/s), and ρ denote the density of seawater
(1025 kg/m3). For regular sea states in deep water, the flux can
be defined according to the standard identity:

EFt ¼ g2ρ=64π
� �

H2
StTMt

h i
� 0:491 H2

StTMt

� �
ð2Þ

To-date, any number of designs for WECs have been proposed,
but no single technology has emerged as dominant. Parkinson et al.
(2015) propose simulating a generic converter, in which the power is
proportional to the flux for low values of the wave height. Since most
converters have a maximum power rating, at higher values of the
wave height the power level is assumed to be constant.

The approach used here however is to calculate power series
using the matrices for several types of converters, as in Reikard
(2013). There is a crucial difference between these approaches. In the
flux, the energy is a function of the wave height squared. In the WEC
matrices, the power output is a nonlinear function of the wave height
and period, typically rising in proportion to the height, and then
declining as the period increases. By implication, the power output
from the matrices will be smoother than the flux.

Three generic types of WEC are used, surface attenuators, point
absorber buoys, and oscillating converters. One device which has
been in use for over a decade is the Pelamis, an attenuator designed to
operate in deep water (Retzler, 2006; Henderson, 2006; Yemm et al.,
2012; Pelamis, 2014). This converter consists of semi-submerged

Fig. 1. The Buoy Locations and the Bathymetry of Vancouver Island. Source for bathymetry: Canadian Hydrographic Service.

Table 2
Statistics comparing the buoy data and the SWAN simulations.

Variable Buoy Observation
pairs

Bias
(B)

Scatter
index (SI)

Correlation
(r)

HS La Perouse EC 8538 �0.04 0.18 0.95
Amphitrite Bank 4092 �0.01 0.20 0.92
Estevan Point 3379 �0.06 0.25 0.88
Florencia Bay 3988 �0.01 0.18 0.92

TM La Perouse EC 8538 �0.86 0.18 0.81
Amphitrite Bank 4092 �0.41 0.17 0.75
Estevan Point 3379 �0.63 0.18 0.76
Florencia Bay 3988 �0.61 0.19 0.66

The bias is denominated in meters for HS and seconds for TM. The modeled
parameters are from the SWAN hindcasts. The measured values are from the buoys.
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cylindrical sections, moored perpendicular to the wave front. The
segments move relative to one another as waves pass along the
length of the machine. This wave-induced motion causes hydraulic
cylinders to pump high pressure oil through hydraulic motors, which
in turn drive generators. Electricity is transmitted along an umbilical
cable to a junction on the sea bed. A single cable can be used for
several devices. Fig. 2 shows the Pelamis power matrix. The machine
attains its maximum power of 750 kW for a range of values of the
height and period, generally 5.5 m or above, and 6.5–12 s. For the
wave height, the resolution of the matrix was increased to 0.1 m,
using linear interpolations.

Conversion matrices for three other types of WECs were calcu-
lated in Babarit et al., (2012). These matrices are reproduced in
Appendices 1–3. The matrices were published at resolutions of 0.5 m
and 1 s, but were increased to 0.1 m using the same procedure as for
the Pelamis. Two of these converters are point absorbers, which use
the rise and fall of waves to drive hydraulic pumps. The floating two-
body heaving converter consists of a torus, which slides along a
vertical spar. The power is generated by the relative motion of the
two bodies. The maximum power for the design assumed here is in
the range of 1000 kW. The floating heave buoy array is composed of
several heaving buoys connected to a submerged reference structure
via a hydraulic system. The number of buoys in this design was
limited to ten, yielding a maximum power of slightly over 3600 kW.

A third type of WEC is an oscillating device, which typically has
one end moored to the seabed, while the other end is free to move.
Electricity is generated by the relative motion of the oscillating
component. The floating three-body oscillating flap device consists of
hinged flaps, which are connected to a common frame. The maximum
power is 1665 kW.

Several converters have been designed for shallow locations. One
of these, the bottom-fixed heave buoy array, has been deployed in
Denmark, and is undergoing further development. The device consists
of a jack-up structure, mounted on the seabed, with many floating
buoys attached to fixed rocker arms. The conversion matrix is given in
Fig. 3. The values up to wave heights of 3 m are from the Wavestar
website (Wavestar, 2014), while values above this height are from
Babarit et al. (2012). The power peaks in the area of 2200 kW.

The bottom-fixed oscillating flap device consists of pitching flaps
oscillating around a fixed axis moored to the sea floor. Devices of this
type are currently under development in Ireland and the United States.
The device incorporates a pump located at a rotating shaft, which
forces pressurized hydraulic oil or water to a shoreline station. On
shore, the hydraulic energy is converted to electricity. The matrix is
given in Appendix 4. The maximum power is in the area of 3300 kW.

5. The wave farm simulations

The first simulation combines data from the Amphitrite and
Estevan buoys. The wave farm was assumed to consist of 101

installations, one each at Amphitrite and Estevan, and at 99 at
points in between, roughly 0.9 km apart. The values for HSt and TMt

were calculated using weighted averages of the two sites. The
power output series were computed using the conversion
matrices. Fig. 4 shows the flux, and Figs. 5 and 6 show the power
series for the Pelamis and the heave buoy array, over a period of
two months (November–December 2013). To facilitate compari-
son, the power is expressed as the average power per converter.
Both the flux and the power output alternate between periods of
high and low energy. The flux is more volatile, with intermittent
large spikes. The power output is noticeably smoother, since the
range of the outliers is limited by the WEC power ratings.

The second simulation uses the La Perouse data. Since the
buoys are closer together, the wave farmwas assumed to consist of
21 installations. Figs. 7–9 show the flux and the power series, over
the period November–December 2012. Here too, the power output
exhibits a rather different pattern from the flux. The flux shows
irregular large outliers. The power output shows a tendency
toward consistently high values but fewer extreme events.

The wave farm at Florencia relies more heavily on modeled
values for the height and period. With only one buoy site, the WEC
installations were simulated using SWAN hindcasts at five loca-
tions, running along a line parallel to the shore. The resulting
values for HSt and TMt were converted to power output series for
the bottom-fixed heave buoy array and oscillating flap devices.
These were then scaled up to simulate 21 converters. Figs. 10–12
show the flux and the power output. There are fewer extreme
outliers at this location, although there are several periods in
which the energy alternates between low and intermediate states.

6. Forecasting experiments

The literature on using time series models to predict waves
originates in the late 1990s. The methods include regressions and
neural networks, although other methods such as genetic algo-
rithms have been proposed (Deo and Naidu, 1998; Deo et al., 2001;
Tsai et al., 2002; Deo and Jagdale, 2003; Ho and Yim, 2006; Londhe
and Panchang, 2006; Jain and Deo, 2007; Tseng et al., 2007;
Zamani et al., 2008; Roulston et al. 2005; Gaur and Deo, 2008).

The basic model used here is a regression on lags. Let Yt denote
a time series, ln denote natural logs, ω denote a coefficient, the
subscript t denote time variation, and εt denote the residual:

ln Yt ¼ω0tþω1t ln Yt�1þω2t ln Yt�2þω3t ln Yt�3þεt ; εt � P 0; ν2t
� �

ð3Þ

where P is the probability distribution and νt
2 is the residual

variance. With hourly data, the Akaike (1973) criterion favored
three lags. The coefficients are assumed stochastic. As demon-
strated in prior studies, when the coefficients are time-varying,

Signficant Wave Height Wave Period (seconds)
(meters) 5.0 5.5 6.0 6.5 7.0 7.5 8.0 8.5 9.0 9.5 10.0 10.5 11.0 11.5 12.0 12.5 13.0

1.0 22 29 34 37 38 38 37 35 32 29 26 23 21
1.5 32 50 65 76 83 86 86 83 78 72 65 59 53 47 42 37 33
2.0 57 88 115 136 148 153 152 147 138 127 116 104 93 83 74 66 59
2.5 89 138 180 212 231 238 238 230 216 199 181 163 146 130 115 103 92
3.0 129 198 260 305 332 340 332 315 292 266 240 219 210 188 167 149 132
3.5 270 354 415 438 440 424 404 377 362 326 292 260 230 215 203 180
4.0 462 502 540 546 530 499 475 429 384 366 339 301 267 237 213
4.5 544 635 642 648 628 590 562 528 473 432 382 356 338 300 266
5.0 739 726 731 707 687 670 607 557 521 472 417 369 348 328
5.5 750 750 750 750 750 737 667 658 586 530 496 446 395 355
6.0 750 750 750 750 750 750 711 633 619 558 512 470 415
6.5 750 750 750 750 750 750 750 743 658 621 579 512 481
7.0 750 750 750 750 750 750 750 750 676 613 584 525
7.5 750 750 750 750 750 750 750 750 686 622 593
8.0 750 750 750 750 750 750 750 750 690 625

Fig. 2. Conversion matrix for the Pelamis P2 device. Power is in kW.
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models of this type can capture a great deal of nonlinearity (Bunn,
2004; Granger, 2008).

It is also possible to forecast with physics-based models. The
properties of physics model forecasts are quite different from those of
statistical techniques. The errors have been found to decay only very
slowly, over a period of several days (Bidlot et al., 2002). However, at
short horizons, they can be less accurate, due to their dependence on
local bathymetry, computational grid spacing and set-up boundary
conditions. For recent evidence on model accuracy, see Garcia-
Medina et al. (2013) and Chawla et al. (2012).

The forecasting experiments were run over four 15-day peri-
ods, July 1–15, October 1–15 and December 1–15, 2013, and
January 1–15, 2014, using boundary spectra from the European
Center for Medium-range Weather Forecasts (ECMWF) high reso-
lution model. The wave model is fully interactive with the IFS
Atmospheric model and provides hourly global output of wave
spectra (Bidlot, 2012). The forecasts begin starting at zero and 12 h
for each day, over a horizon of 48 h. In order to insure compar-
ability, the time series models are run only for the same intervals
as the SWAN forecasts.

Table 3 reports the findings for the Amphitrite–Estevan wave
farm. At the 1 h horizon, the lowest forecast errors are achieved by
the time series models: 22 percent for the flux, 19 percent for the
Pelamis, 24 percent for the two-body heaving converter, 11
percent for the heave buoy array and 17 percent for the oscillating

flap device. However, the accuracy of the time series models falls
off very rapidly. Conversely, the SWAN error shows no visible
trend. Instead, the SWAN error increases over the first few hours,
but then oscillates. As with the statistical models, the accuracy of
the SWAN forecasts also varies depending on the particular device.
The points of convergence, at which SWAN forecasts more accu-
rately than the time series models, are 3 h for the flux and most of
the WECs, but as little as 2 h for the two-body heaving converter.

The La Perouse wave farm simulation extends only to April
2013, so a second database was created using the EC buoy and
SWAN simulations. This data set runs from January to December
2013, so the accuracy calculations are for 2013 alone. Table 4
reports the forecast errors. Using the time series model, the errors
are 18 percent for the flux and the Pelamis, 25 percent for the two-
body heaving converter, 19 percent for the heave buoy array and
20 percent for the oscillating flap device. Here also, the SWAN
error does not trend so much as fluctuate. The convergence point
occurs at about 2 h for the flux, the oscillating flap device and the
two-body heaving converter, and 3 h for the other two converters.
At this location, SWAN effectively captures the transitions between
periods of high and low energy, particularly in October and
December. By comparison, the time series model imparts too
much inertia to the forecast, missing the transition points.

For both locations, the two-body heaving converter consistently
shows the highest forecast errors. The Pelamis device shows the

Signficant Wave Height Wave Period (seconds)
(meters) 3 4 5 6 7 8 9 10 11 12 13 14 15 16

1.0 49 73 85 86 83 78 72 67 63 59 46 42 37
1.5 54 136 193 205 196 182 167 153 142 132 123 107 94 80
2.0 106 265 347 347 322 294 265 244 224 207 193 185 180 153
2.5 175 429 522 499 457 412 372 337 337 288 267 225 236 228
3.0 262 600 653 641 602 557 555 460 471 451 445 437 381 325
3.5 900 848 785 717 662 656 557 551 571 580 478
4.0 1123 1098 1030 984 825 857 821 830 735 635 652
4.5 1339 1339 1202 1181 1050 1140 1012 948 863 845 828
5.0 1689 1518 1403 1318 1248 1348 1115 1176 925 890 982
5.5 1943 1749 1517 1477 1374 1395 1376 1289 1212 1117
6.0 2192 2144 1618 1789 1586 1634 1783 1585 1346 1313

Fig. 3. Conversion matrix for the bottom-fixed heave buoy array. Power is in kW.

Fig. 4. Wave energy flux, Amphitrite-Estevan. Left scale: kW/m.
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lowest errors at the La Perouse site, while the heave buoy array
performs best at Amphitrite–Estevan. Despite the greater depth, the
forecast error is substantially lower at La Perouse than at Amphitrite–
Estevan. Because of the greater wave heights at La Perouse, the
Pelamis and two-body heaving converter frequently operate at their
maximum power, a constant value. Conversely, at the Amphitrite–
Estevan wave farm, both WECs consistently operate below their
maximum power, so the resulting series are more variable.

Table 5 reports the findings for the Florencia wave farm. At the
1 h horizon, the time series model errors are 8.3 percent for the

bottom-fixed heaving converter and 9.7 percent for the oscillating
flap device. The accuracy deteriorates very rapidly, so that by 6 h
the errors have surpassed 20 percent. By comparison, SWAN yields
errors of 16 and 21 percent at the 1 h horizon, but the deteriora-
tion in accuracy is much slower. The convergence point for both
converters is about 6 h. SWAN is a bit less accurate for the flux,
where the convergence point is closer to 9 h. In contrast to the two
deep water sites, the accuracy of the SWAN forecasts does
deteriorate as the horizon increases. However, at long horizons,
SWAN is substantially more accurate than the regression.

Fig. 5. Power output, Pelamis, Amphitrite-Estevan. Left scale: kW.

Fig. 6. Power output, heave buoy array, Amphitrite-Estevan. Left scale: kW.

G. Reikard et al. / Ocean Engineering 103 (2015) 223–236228



7. Integration into the grid

The final issue, and perhaps the most critical one for the power
industry, is integrating wave energy into the grid. The cost of grid
integration can be quantified in terms of reserves, i.e., generating
capacity available to buffer against the uncertainty from variable
energy sources. Load data is available from BC Hydro, the utility
that serves British Columbia, from 2007 onward (BC Hydro, 2014).

At BC Hydro, there are three categories of reserves. Regulating
reserves are used to meet performance criteria on a minute-to-
minute basis. Load following reserves are used to track changes in
load over time horizons of 10 min. Balancing (or imbalance)
reserves cover differences between the hourly load and the
forecast 1 h ahead. Capacity-up reserves cover deficits in wave
power relative to forecast, while capacity-down reserves cover
wave power surpluses. Another interesting number is the net

Fig. 7. Wave energy flux, La Perouse. Left scale: kW/m.

Fig. 8. Power output, Pelamis, La Perouse. Left scale: kW.
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power required from conventional sources, i.e., the load less the
share supplied by wave power. Because of the nonlinear variability
in waves, this is less predictable than the load itself.

The grid integration experiments were set up as follows. The
first 500 observations were used as a training sample. The wave
power output series were then forecasted iteratively, using the
time series model, over a 1 h horizon. In each instance, the models
were estimated over prior values, forecasted, then re-estimated

over the most recent value, etc. All the predictions are true out-of-
sample forecasts, in that they use only data prior to the start of the
horizon. Time-varying parameter regressions can be estimated
either using a Kalman filter (Kalman, 1960) or a moving window.
With an unrestricted Kalman filter, the coefficients behave as a
random walk, reducing predictive accuracy, so the moving win-
dow was used instead. Narrower widths allow high degrees of
coefficient variation, while wider widths make the coefficients

Fig. 9. Power output, heave buoy array, La Perouse. Left scale: kW.

Fig. 10. Wave energy flux, Florencia. Left scale: kW/m.
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more inertial (Rossi and Inoue, 2012). The lowest predictive errors
were found for widths in the range of 400–600 h. In the tests, a
window width of 480 h was used.

To forecast the power load, the well-known ARIMA (autore-
gressive, integrated, moving average) class of models was used,
again with time-varying parameters. Let Yt denote the demand for
power. Following the notation of Box and Jenkins (1976), let ϕ(L)

be the autoregressive operator, represented as a polynomial in the
backshift operator: ϕ(L)¼1�ϕ1L�⋯�ϕpL

p, and Φ(L) be the sea-
sonal autoregressive operator. Let θ(L) be the moving average
operator: θ(L)¼1þθ1Lþ⋯þθqL

q, and Θ(L) be the seasonal moving
average operator. Let the superscript ξ denote the order of
differencing, and the superscript ζ denote the order of seasonal
differencing. Let the superscript f denote the cyclical frequency; for

Fig. 11. Power output, bottom-fixed heave buoy array, Florencia. Left scale: kW.

Fig. 12. Power output, bottom-fixed oscillating flap device, Florencia. Left scale: kW.
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the hourly data, f¼24. The model is then of the form:

1�Lð Þξð1�Lf Þζ ln Yt ¼ ½θt Lð ÞΘt Lð Þ=ϕt Lð ÞΦt Lð Þ�εt ð4Þ

The hourly load forecasting model is an ARIMA (3,0,0)(2,1,0),
i.e., three proximate lags, two lags at horizons of 24 and 48 h, and
differencing at the 24 h horizon.

In order to be able to compare the reserves associated with
different types of converters, the wave power was normalized to
500 MW, or 7.25 percent of the load. The forecasts are run for
three time periods, coinciding with the intervals covered by the
wave farm simulations. Table 6 reports the mean values for
capacity-up and capacity-down reserves, expressed both in MW
and as a share of the power. Table 7 reports the forecast errors for
the load, the wave farms and the net power.

The errors for the aggregate load (Table 7) are fairly similar for
all three periods, ranging from 0.76 to 0.89 percent. Balancing
reserves (Table 6) are in the range of 53 to 59 MW, or less than
1 percent of the load. Capacity-up reserves are marginally higher
than capacity-down reserves.

The forecast errors for the wave farms are lower than in the
experiments for the shorter periods reported in Tables 3–5. These
are the average errors for all points covered in the wave farm
simulations.

Amphitrite–Estevan: At Amphitrite–Estevan, the wave power
errors are 11.9 percent for the Pelamis, 14.4 percent for the two-
body heaving converter, and 10–10.5 percent for the heave buoy
array and oscillating flap device. The capacity-up reserves required
for the Pelamis, the heave buoy array and the oscillating flap
device range from 47 to 53 MW, or 7–10 percent of the wave
power. The capacity-down reserves are range from �43 to
�46 MW, or 8–11 percent of the wave power. The forecast error
for the net power (Table 7) is in a narrow range of 1.41–1.45
percent. For the two-body heaving converter, reserves are higher
65 MW for capacity up and �64 MW for capacity down, or 13–14
percent of the wave power, while the net power error increases to
1.6 percent.

La Perouse: At La Perouse, the forecast errors are 7.8 percent for
the Pelamis, 9.4 percent for the two-body heaving converter,
7.9 percent for the heave buoy array and 9.2 percent or the

Table 3
Forecast errors for Amphitrite–Estevan.

Forecast
Horizon

Time series models SWAN

Two body Two body
heaving Heave Oscillating heaving Heave Oscillating

Flux Pelamis converter buoy array flap device Flux Pelamis converter buoy array flap device

1 22.60 19.47 24.13 10.58 17.41 33.65 38.15 41.38 21.10 31.65
2 34.67 27.62 37.84 16.36 21.19 41.98 33.64 26.75 22.60 23.71
3 45.80 35.69 47.10 22.50 25.75 34.73 30.95 26.75 17.45 20.54
4 58.40 39.36 62.74 20.08 34.74 39.98 37.75 37.00 15.94 32.75
5 54.42 41.79 60.48 21.53 33.07 36.37 29.69 27.75 17.13 20.62
6 75.41 52.65 87.26 25.56 48.82 40.19 34.69 32.86 17.88 29.03
7 91.66 53.68 100.16 29.27 51.22 41.52 31.95 29.85 14.31 26.66
8 84.37 52.97 92.00 26.82 48.07 43.90 35.88 38.77 18.76 28.95
9 88.43 55.26 99.83 29.59 49.91 57.66 43.59 45.04 32.06 35.96

10 99.16 62.31 111.28 29.57 56.15 49.36 36.16 36.22 19.49 30.40
20 88.79 63.45 92.60 41.22 54.22 26.89 23.54 29.42 17.71 22.15
30 134.97 81.86 112.36 40.97 61.74 46.68 30.11 42.84 26.78 26.14
40 129.73 80.66 111.42 35.33 63.67 59.42 45.26 44.85 44.74 27.88
48 153.27 93.67 128.42 35.52 77.55 41.60 29.21 33.10 18.27 24.02

Statistics are the mean absolute percent error.
Time period: selected dates in July, October and December 2013, and January 2014.

Table 4
Forecast errors for La Perouse.

Forecast
Horizon

Time series models SWAN

Two body Two body
heaving Heave Oscillating heaving Heave Oscillating

Flux Pelamis converter buoy array flap device Flux Pelamis converter buoy array flap device

1 18.08 18.19 25.48 19.04 20.43 25.45 33.86 39.08 24.28 26.78
2 30.32 24.85 32.34 19.33 29.08 29.49 41.56 32.35 24.84 26.78
3 48.26 28.52 49.31 21.55 34.29 29.82 33.92 35.70 23.10 28.78
4 56.66 43.97 78.49 23.46 50.30 30.57 36.21 35.50 22.41 32.46
5 69.04 40.41 86.28 21.51 57.61 42.36 32.05 34.16 19.00 27.34
6 80.91 49.34 108.31 23.37 74.94 40.82 29.26 36.67 19.17 27.50
7 101.29 55.40 122.37 26.14 84.61 39.05 32.00 42.64 20.27 35.63
8 100.03 65.81 116.63 29.42 85.97 37.51 33.39 39.24 22.22 36.35
9 132.50 61.14 170.51 36.80 84.92 27.10 29.88 54.37 22.45 43.29

10 114.59 59.93 92.02 39.45 64.64 30.27 31.50 38.51 23.89 34.79
20 217.04 103.76 182.64 88.60 93.16 33.39 37.60 48.92 25.52 32.38
30 243.00 138.17 188.69 86.70 93.96 53.46 37.85 49.07 21.87 36.73
40 262.35 181.70 293.11 96.19 122.61 41.42 47.30 42.45 32.56 33.37
48 305.20 225.39 295.66 95.11 153.49 23.72 37.21 41.19 23.54 34.17

Statistics are the mean absolute percent error.
Time period: selected dates in July, October and December 2013.
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oscillating flap device. The capacity-up reserves required for the
Pelamis, the oscillating flap device and the heave buoy array are in
the range of 27–33 MW, or 5.7–6.3 percent of the wave power.
Capacity down reserves are even lower, �23 to �28 MW, or 5.6–
7.5 percent of the power. The reserves for the two-body heaving
converter are again higher. Capacity up reserves are 39 MW, or

8 percent of the power, while capacity down reserves are
�32.6 MW, or 9 percent of the power. The net power error ranges
from less than 1 percent for the Pelamis to 1.16 percent for the two
body heaving converter.

Florencia: At Florencia, the forecast errors are 4.6.percent for
the bottom-fixed heaving converter and 6.5 percent for the
oscillating flap device. The capacity-up reserves are as little as
22.4 MW or 4.4 percent of the wave power for the bottom-fixed
heave buoy array. Capacity down reserves are roughly �20 MW,
or 4.9 percent of the power. The reserves are much higher for the
oscillating flap device. Capacity up reserves are 50 MW, or 15.9
percent of the power, while capacity down reserves are
�47.6 MW, or 13.5 percent of the power. The error for the net
power is 1.03 percent for the heave buoy array and 1.15 percent for
the oscillating flap device.

In order to provide some context for these reserve and error
values, it is useful to compare them with calculations for wind and
solar energy. Forecasting experiments for wind speed at the 1 h
horizon have found that the minimum error, even in optimal wind
conditions, is in the range of 12–16 percent, but more typically lies
in a range of 25–30 percent (Reikard, 2008, 2010). For solar energy,
the errors are usually higher. Forecasting tests for solar irradiance
at ground level have found errors in the range of 20 percent in
areas with little cloud cover, but errors closer to 40 percent in
areas where cloud cover is heavier (Reikard, 2009).

BC Hydro does not release data on wind and solar power.
However, wind and wind forecast time series have been published
by the Bonneville Power Administration (BPA) in the United Sates.
The BPA serves the region just south of British Columbia–
Washington, Oregon, Idaho and parts of the surrounding states—
so that its data sets provide a reasonable benchmark for compar-
ison. Hourly values for reserves and wind power were downloaded
for January 1, 2012 through December 31, 2013 (Bonneville Power
Administration, 2014). BPA operates more than 40 wind farms,
with a combined capacity of 4515 MW; the average hourly power
was 1218 MW. Using BPA’s hourly forecast for wind power, the
mean error was 59 percent, although this is upwardly biased by a
small number of extreme errors. If these are excluded, the error is
in the 30 percent range. Capacity up reserves averaged 164 MW, or
16 percent of the wind power, while capacity down reserves
averaged 115 MW, or 35 percent of wind power. These values are

Table 5
Forecast errors for Florencia.

Time series models SWAN

Bottom-
fixed

Bottom-
fixed

Forecast heaving Oscillating heaving Oscillating
Horizon Flux converter flap

device
Flux converter flap device

1 5.62 8.31 9.74 22.85 16.28 21.67
2 8.61 9.90 12.05 23.46 17.35 23.14
3 10.54 12.05 13.63 25.52 18.53 25.56
4 14.30 18.30 20.45 29.12 20.88 26.22
5 18.30 19.92 22.08 31.70 24.01 27.77
6 23.60 25.99 29.10 34.29 27.73 28.96
7 28.06 29.75 34.91 34.37 29.61 28.67
8 33.40 31.73 38.60 35.66 32.11 28.49
9 39.10 32.45 35.66 37.64 34.97 31.23

10 44.41 33.03 44.63 39.26 30.96 33.33
20 81.13 55.76 84.14 59.17 56.19 56.00
30 181.38 86.39 145.82 90.47 78.44 80.83
40 276.93 129.02 229.50 184.84 128.30 103.81
48 277.97 144.14 249.93 188.40 130.40 139.26

Statistics are the mean absolute percent error.
Time period: selected dates in July, October and December 2013.

Table 6
Balancing reserves.

Hourly power scheduling

Capacity
up

Capacity
down

Site and converter Reserves
(MW)

Reserves/
power

Reserves
(MW)

Reserves/
power

Amphitrite–Estevan (500 MW)
Aggregate Load 59.41 0.9 �58.06 0.9
Pelamis simulation 53.16 10.7 �45.65 11.6
Two-body heaving
converter

65.26 12.6 �64.07 14.2

Floating heave buoy array 46.83 7.4 �42.81 7.9
Three-body oscillating
flap device

48.54 9.7 �45.56 10.9

La Perouse (500 MW)
Aggregate Load 52.98 0.8 �52.63 0.8
Pelamis simulation 27.49 6.3 �22.84 7.5
Two-body heaving
converter

39.15 7.8 �32.59 9.1

Floating heave buoy array 31.21 5.7 �23.99 5.6
Three-body oscillating
flap device

33.91 6.3 �27.91 6.8

Florencia (500 MW)
Aggregate Load 57.68 0.8 �56.55 0.8
Bottom-fixed heave buoy
array

22.42 4.4 �19.43 4.9

Bottom-fixed oscillating
flap device

50.19 15.9 �47.57 13.5

The period covered by the Amphitrite–Estevan simulation is April 19, 2013 to
January 17, 2014. The period covered by the La Perouse simulation is January 1,
2012 to April 28, 2013. The period covered by the Florencia simulation is January 1,
2013 to January 17, 2014. Statistics are the mean absolute value of reserves, and the
mean ratio of reserves to power, expressed as a percentage.

Table 7
Forecast errors for the load and net power.

Amphitrite–
Estevan

La
Perouse

Aggregate load 0.89 0.76
Pelamis 11.92 7.84
Two-body heaving converter 14.39 9.43
Floating heave buoy array 10.07 7.93
Three-body oscillating flap device 10.42 9.23
Net Power, Pelamis (load less Pelamis) 1.42 0.97
Net power, two body heaving converter 1.63 1.16
Net power, heave buoy array 1.45 1.08
Net power, three body oscillating flap device 1.41 1.12

Florencia
Aggregate Load 0.84
Bottom-fixed heaving converter 4.64
Bottom-fixed oscillating flap device 6.52
Net power, bottom-fixed heave buoy array 1.03
Net power, bottom-fixed oscillating flap
device

1.15

Statistics are the mean absolute percent error. The period covered by the
Amphitrite–Estevan simulation is April 19, 2013 to January 17, 2014.
The period covered by the La Perouse simulation is January 1, 2012 to April
28, 2013.
The period covered by the Florencia simulation is January 1, 2013 to January
17, 2014.
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of course not independent of scale. If they are scaled down to
500 MW, as in the wave simulations, the corresponding values
would be 68 MW and 47 MW. These are still much larger, both in
absolute terms and as a percent of renewable energy, than the
values calculated for any of the wave farms.

8. Conclusions

This study has yielded several findings. First, physics model
simulations are an effective way to interpolate missing values,
particularly when dealing with extended gaps in the wave buoy
records. One of their main strengths is their ability to capture
seasonality. It is acknowledged that physics models hindcasts are
smoother than buoy data. However, over the larger geographic
areas spanned by wave farms, physics models may be more
effective. The degree of smoothing implied by geographic dispersal
can be substantial. At the sites analyzed here, the forecast errors
for the wave farm power series are on the order of 30 percent
lower than for the individual buoys.

Second, the power output from WECs does not have the same
properties as the flux. The flux is by construction extremely
volatile. The WEC power output exhibits much less variability.
Both the flux and the power output exhibit seasonality, increasing
during the autumn and winter months. However, during winter
storms, when the flux can be very difficult to forecast, the power
output can actually become more predictable as the converters
reach their maximum ratings.

Third, time series models predict more accurately over short
horizons while physics models are found to forecast more accu-
rately over longer horizons. The convergence points range from
2 to 3 h at the deep water sites to 6 h at the one shallow site. This
is lower than in previous studies. Despite this, at the 1 h horizon
necessary for calculating reserves, the time series models are more
accurate. The most likely explanation is that the physics model is

capturing the underlying causal mechanisms at lower frequencies,
while the time series model is picking up mainly on serial
correlation (dependence between proximate time points) in the
data. The recommendation is therefore to use time series models
for short-term forecasts at the horizons required for reserves, but
to use physics models for longer-term planning.

Fourth, the degree of forecast accuracy differs both for the
particular WEC and the location. For the shallow water devices,
the heave buoy array shows a much greater degree of accuracy
than the oscillating flap device. For the deep water devices, the
errors for the Pelamis, the heave buoy array and the oscillating flap
device are in the same range at one site (Amphitrite–Estevan),
while the error for the two body heaving converter are higher. At
the other location, the errors for the heaving converter and
oscillating flap device are higher than for the other two converters.
The errors can also vary over particular intervals. For the longer
periods spanned by the simulations, the average errors are lower
than over the shorter intervals used in the SWAN-time series
comparison. Further analysis is warranted, but the findings here
indicate that attenuators and heave buoy arrays are less costly in
terms of reserves.

Finally, integration of wave power into the grid requires lower
reserves than wind and solar. The forecast errors at 1 h can be as
low as 5 percent in shallow water. Based on the locations here,
they are typically in the range of 10–14 percent at slightly deeper
areas along coastlines and 8–10 percent in deep water. These are
lower than for other types of renewable energy. In this sense, the
findings argue in favor of developing wave power along the Pacific
coast, and at sites with comparable conditions around the world.

Appendix A

Tables A1–A4.

Table A1
Conversion matrix for the floating two-body heaving converter. Power is in kW.

Signficant wave height (m) Wave period (s)

4 5 6 7 8 9 10 11 12 13 14 15 16

1.0 6 11 19 25 30 44 50 53 44 34 22 20 17
1.5 13 25 43 55 68 90 102 92 91 66 65 45 37
2.0 24 45 65 100 121 153 175 151 122 126 87 61 58
2.5 65 104 141 191 179 243 255 190 181 135 99 83
3.0 96 137 205 244 357 293 353 260 248 184 137 120
3.5 192 254 291 431 385 424 314 285 239 222 172
4.0 256 366 403 551 536 531 473 420 289 268 179
4.5 327 418 574 678 708 665 509 415 386 244 240
5.0 358 514 658 824 828 618 638 512 452 384 333
5.5 610 774 880 936 905 805 603 456 397 311
6.0 711 952 974 1000 838 886 648 501 503 396
6.5 788 1000 1000 1000 1000 1000 727 577 435 424
7.0 781 1000 1000 1000 1000 1000 959 748 574 472
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Appendix B. Supporting information

Supplementary data associated with this article can be found
in the online version at http://dx.doi.org/10.1016/j.oceaneng.2015.
04.081.
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